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A B S T R A C T  

We prove a var iant  of a t h e o r e m  of N. Alon and  V. D. Mi lman.  

Using it we cons t ruc t  for every n-d imens iona l  Banach  spaces X and  Y 

a measu re  space ~ and  two opera tor-valued funct ions  T: ~ --~ L ( X , Y ) ,  

S: ~l --~ L(Y, X )  so t h a t  ff l  S(w)oT(w) dw is the  ident i ty  opera tor  in X and  

fN lIS(w)ll " IIT(w)H dw -- O(n a) for some absolute constant a < 1. 

We prove also t h a t  any  subse t  of  the  uni t  n - cube  which is convex, 

s y m m e t r i c  wi th  respect  to the  origin and  has  a sufficiently large vo lume 

possesses a sect ion of big d imens ion  isomorphic  to a k-cube.  

Let X and Y be Banach spaces of the same dimension n. The Banach-Mazur  

distance between X and Y is defined as d(X,Y) = inf l lTII ,  lIT-111 over all 

invertible operators T from X to Y. Computing or estimating the distance 

between Banach spaces is one of the central problems in the Local theory. In 1984, 

N. Tomczak-Jaegermann introduced another distance between Banach spaces [T- 

J1]. First she defined a weak factorization norm of the identity operator of X 

through Y as 

Y) = inf J~ IIS(w)ll . IIT(w)lldw q(X, 

where inf is taken over all measure spaces (12, dw) and all (measurable) maps 

T: 12 --* L(X, Y), S: 12 --* L(Y, X) so that  f~ S(w) o T(w)dw = i d x - - t h e  iden- 

t i ty operator. The weak distance between X and Y is defined as wd(X, Y) = 

max(q(X, Y), q(Y, X)). It  is obvious that  for all Banach spaces X, Y of the 
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same dimension wd(X, Y) < d(X, Y). A rather simple observation is that the 

Banach-Mazur distance between the Euclidean space and any other space of 

the same dimension coincides with the weak distance [T-J1]. More facts about 

the weak distance between finite-dimensional Banach spaces and the connec- 

tions with other branches of the Local theory are discussed in the review [L-M]. 

One of the most interesting questions concerning the notion of the Banach- 

Mazur distance was the estimation of the maximal distance between two Ba- 

nach spaces of dimension n. A trivial consequence of a classical result of F. 

John is that this distance is not greater than n [T-J2]. In the famous paper 

[G] E. Gluskin proved the existence of an absolute constant c so that for all 

n there are two n-dimensional Banach spaces for which the distance between 

them is at least cn. For some probability space (~t, E, tt) he defined a ran- 

dom function G from ~t to the set of convex symmetric bodies in R n such that 

for every w, G(w) is the absolute convex hull of 3n vectors in Nn. These vec- 

tors are supposed to be independently normally distributed with respect to the 

measure #. He defined the space X~ to be R n with the unit ball G(w) and 

showed that with probability close to 1, d(X~,X,~,) >_ cn,(w,w') E ~ x ~l. 
N. Tomczak-Jaegermann proved that  with a probability close to 1 the weak dis- 

tance between two Gluskin spaces is less than Cx/~ for some absolute constant 

C. This fact as well as other considerations led to the following two questions: 

(1) How much could the weak distance differ from the Banach-Mazur distance? 

(2) What  is the maximal weak distance between two spaces of dimension n? 

As to the question (1) we note here that for every e > 0 there exist two 

n-dimensional Banach spaces for which the weak distance between them is less 

than l + e  and the Banach-Mazur distance is not less than c(e)n for some constant 

c(e). For two k-dimensional Banach spaces Y and Z define the spaces Win, W~ 
t t  

and W,~ as follows: 

wm= y e Y e . . . e Y e , Z e z e . . . e z  
y 

rn t imes m t imes 

w : = Y e V e . . . ¢ Y e z e z e . . . e z  
( r n + l )  t imes m t imes 

H 

wm = y e Y e . . . e Y e Z e Z e . . . e z  
Y 

m t imes (rnTl) t imes 

Then the weak distance between the spaces W~ and W~ is at most 1+ ~ .  Indeed, 

for j = 1 . . .  m, let Pj be a projection from W~ onto Wm whose kernel is the j-s 
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summand of W~ and P,~+I be a projection on Y • Y ® . . .  @ Y whose kernel is 

7n ~lmes  

the sum of the last summand Y of W' m and all the summands Z. It is obvious 

that  the identity operator on the space Wm can be factorized through the space 

W~ and the norm of this factorization will be 1. Combining the projections Pk, 

k = 1 , . . . ,  (m + 1), with this factorization one gets a weak factorization of the 

identity operator of W~ through W~ with the weak factorization norm ,,+I m 

From the other side if we take Gluskin spaces as the spaces Y and Z then it 

can be checked (using the technique of S. Szarek IS1]) that the Banach-Mazur 

distance between W "  and W~ will be at least c(m)n with large probability. 

The main part of this paper is devoted to question (2). Our result is the 

following 

THEOREM 1: The weak distance between two n-dimensional Banach spaces is 

not greater than C n ~  log ~ n for some absolute constant C. 

In view of this theorem it is natural to conjecture that the weak distance is 

actually at most Cx/~ (with perhaps some added logarithmic factor). 

The proof of the theorem is based on the combination of two ideas. The first 

due to J. Lindenstrauss and A. Szankowski [L-S1], [L-S2] is that of using block- 

Gaussian matrices. The second is a variant of the theorem of N. Alon and V. 

Milman [A-M]. This theorem gives a possibility to find subspaces well isomorphic 

to g~ in certain Banach spaces. The lemma we prove in this direction has also 

another consequence concerning spaces with large volume ratio. Let B x  be the 

unit ball of the n-dimensional Banach space X. We define the volume ratio of 

the space X as 
/ vol(Dx) ) 1/n 

vr(X) = min \ vol(E) 

over all ellipsoids C contained in Bx.  This parameter plays a crucial role in 

the Local Theory ([L-M], [P]). If vr(X) = 1 then X is obviously Euclidean. If 

vr(X) < C for some constant C then X has a subspace of dimension at least 

~, C-isomorphic to Euclidean space with the constant C' depending only on C 

([S2]). The maximal value of vr(X) over all n-dimensional spaces is of order x/~. 

In [B] K. Ball proved that the only space with maximal volume ratio is e~o. Thus 

one can conjecture that  if the volume ratio of the space X is proportional to the 

maximal volume ratio then X has a sufficiently large subspace well isomorphic to 

/ ~ .  By considering the dual of the Gluskin space one can see that the dimension 
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of such a space can not exceed v/n. We prove here 

THEOREM 2: Let a > 0 and X be a Banach space of dimension n. / f v r ( X )  > 

then there exists a subspace Y of X of dimension at least C(a)logV~ , a v/~ 

C(a) log n-isomorphic to the space £dio~m Y. 

If K is a convex symmetric with respect to the origin subset of the unit cube 

B ~  and 
vol(B2o) 

then vr (K)  > c(a)vfn. So, we have 

COROLLARY: 

B ~  and 

< a, 

Let K be a convex symmetric with respect to the origin subset of 

(vol(B ) 

C(a) logn-isomorphic to Then K has a section of dimension at least C(a)logn, 

the cube. 

Remark: Using an argument of James [J], one gets for every e > 0 a section of 

dimension n c(a'e)/los logn which is (1 + e)-isomorphic to the cube of its dimension. 

| 

We shall use the standard notation (see [M-S], [L-M]). For a finite set J we 

denote by IJ[ the cardinality of J .  By g we denote a Ganssian vector in R n , the 

vector with independently standard normal distributed coordinates. B~ stands 

for the Euclidean ball of R n , Bx  for the unit ball of the space X. The dimensions 

of all the spaces are integer numbers. If the dimension we get in some formula 

is not integer, the integer part should be taken. By C, C, c we denote absolute 

constants whose value may change from line to line. We start  with the following 

LEMMA: Let X be a Banach space of dimension n, and let B'~ be the ellipsoid 

of maximal volume contained in B x .  Let a, K be positive constants. Assume 

that there is an orthogonal projection P: ~'~ --~ £'~ with rank P )_ an so that 

E]IPg]]x < K.  Then there exists a subspace of X of dimension m > v'~ 
- -  - -  C ( a ) K  

which is C(a)K-isomorphic to the space ~o. 

This lemma is a variant of the main result of the paper [A-M] of N. Alon and 

V. Milman. The proof we give is however different. Instead of the combinatorial 

technique of [A-M] we use here estimates of a probabilistic nature such as the 



Vol. 89, 1995 WEAK DISTANCE BETWEEN BANACH SPACES 193 

lemma of Slepian and the large submatrices principle of Bourgain and Tzafriri 

[B-T1]. 

The proof consists of three steps. First we construct an orthonormal system 

in e~ with some special properties. Then we choose a random subsystem of 

this system so that  the hypercube generated by the vectors of this subsystem is 

contained in the unit ball of X. Finally we use the large submatrices principle 

to derive the lemma itself. 

Without loss of generality we may assume that  X is a subspace of Lp(u) for 

some 2 < p < c~ and v. Indeed, one can slightly change the norm of X to embed 

it into the space g~.  

STEP 1: Let X, P, a and K be the same as in the lemma. Then there exist 

a probability space (g/, ~, #), an embedding of X into the space Lp(#) and m 

vectors w l , . . . ,  win, m >_ c~(a)n, so that  

(i) a(a) < [IwiHx _< 1 for i = 1 , . . . , m ,  

(ii) (wi, wj)e~ = &j--Kronecker's symbol for i , j  = 1 , . . . ,  m, 

(iii) [t(2~=llWk12)l/2 L~(,) <-- C (a )K .  

The ~onstants a(a),  C(a) depend only on a. 

The proof is similar to the proof of proposition 2.5 in [B-T2]. We give it for 

the sake of completeness. 

Proof: By the theorem of Lewis [L] there exist a probability space (g/, ~, #), 

an embedding of the space X into Lp(#) and an orthonormal (in the sense of 
n Z ]2 L2(p)) system {zk}~=l in X such that Ek=ll k = n. Clearly the same equality 

is satisfied for all complete orthonormal systems in X. 

Let I be the identity operator from g~ onto X. Then by the theorem of F. John 

IT-J2] 

III: e~ ~ xl l  = 1 

(1) •2(I21: x --+ l~) = vfn 

Let Y be the image of the projection P. We construct inductively a sequence of 

nl  = -~ vectors Wl, • • •, wnl in Y so that  

(a) (wk, we)e~ = 5k~ (We shall identify the vectors wk with their images under 

the identity operator 1-1 ), 

(b) (wk, W~}L2(~) = 0 for k ¢ e, 

(c) Ilwkllx = IlwkllL,<.) > 
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Suppose that the vectors Wl, . . .  ,w~, s < ~ ,  are already defined and define 

the vector w~+l. First define a subspace H of X as follows: 

H Y n [span(w1. w,)]~ n [span(w1 w ± . . . . . .  ~)]L~(~)" 

a n  Then d i m H  >_ d imY - 2s _> an - 2s > -5-, and so by (1) 

•/-• ~_ 1-11H: X ~ X)  7r2(1 o 

< HIII- , ( . ) :  e~ -~ x H - ~ ( I - 1 1 H :  x -~ t~) 

Thus one can find a vector w8+1 E H such that [[ws÷lJJq = 1 and [[w,÷lJJx k 

x/-~" Having constructed the vectors w l , . . . ,  wnl we renumerate them so that the 

sequence of the norms ]lwkl]L2(~) becomes non-decreasing. Since the sequence is 

orthonormal in the space ~ ,  one can decompose the Gaussian vector g into the 

s u m  
n l  

g = E gkwk + 
k = l  

where the gk are independent normal variables and ~ is a Gaussian vector in the 

orthogonal complement of span{wk}~=l in the space g]. So 

~i n l  

K >_ EIIPgllx >_ Ell EgkwkllL~(,) >_ Ell E gkwkllL2(t,) 
k = l  k =  

>_ E( y~  Igkl ~) II~l lL, ( . )  >_ .EIgl-II~IIL~(.)  = II~IIL~(.). 

It follows from this estimate that for.every k < ~ ,  ][wkl[L2(~) _< Vfl-~ K. Hence 

,~/2 r K  2 n~2 ]wk] 2 irK2 3 rK2  
y~  Iw~l 2 < . . . .  ~ < n - 

because the vectors ~ form an orthonormal system in the space L2(#). 

I 
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W m STEP 2: Let the space X and the sequence { k}k=l be as in the step 1. Then 

there exist a constant C'(a) and a set J C {1, . . . ,  m} of at least vfm elements so 

that 

(2) II ~"kwkll < ~(a)K. maxlakl 
- -  k E J  

k E J  

for every sequence {ak}~ej. 

Proo~ Denote by zk(w), k : 1 , . . . ,m,  the sequence of independent Bernoulli 

random variables taking the values 0 and 1 so that P{zk = 1} = ~ = 1 ~ .  Let 

1 + ! = 1 .  
P q 

Define J = J(w) as the set of all indices k such that zk(w) = 1. It will be 

proved that with positive probability [J[ _> ~ and (2) is satisfied. To do this 

consider the number 

m 

sup ~-~. zk(~)l($, Wk)l- 
lifllLq(.) =1 k=l 

Then 

m 

a_~5. sup E l(f, wk}] + E~ 
IifllLq(,,) =1 k=l 

Each summand will be estimated separately. By (iii), 

m m 

sup E E I.(., 
]tf[]Lq(t') =1 k : l  k : l  

m 

v f m  ( E IWkl2) 1/2 
-- k=l L~¢(~) 

m 

sup k~..:l(z~:(w) - 5)l(f, wk)]. 
l l f l l L q ( p )  -~ I  = 

< ~f~C(a)K. 

The second summand is the expectation of the supremum of the sum of the 

independent random vectors ( z k ( w ) -  5)[(f, wk)[ in the space ~(BL~(t,)) .  The 

expectation of these vectors is 0, so for normal variables gk(w') independent of 

zk(w) we get 

m 

sup ~(zk(~) -  ~)l(I, wk)l 
[ I f n L q ( p )  ~-1 ]¢----I 

?It 

< v ~ ,  sup ~ (zk(~) -  ~)g~(~')l(/,w~)l. 
II]]IL~(~)=I k=l 
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By the lemma of Slepian [P] it is less than 

m 

x/~Y_~ Y_~, sup E (zk(w) - 5)gk(w')(S, wk) 
Ilfllrq(.) =1 k = l  

m 

= v f - ~  ~ ,  II ~ ( z ~ ( ~ )  - e)g~(J)w~llL,(,) 
k = l  

m m 

k = l  k = l  

W m Since the sequence { k}k=l is orthonormal in the space/~ these expectations 

are not greater than K. So, one gets 

a < K ( x / ~ .  (1 + 5) + C(a)) = C(a)K. 

This guarantees the existence of w so that the set J = {k: zk(w) = 1} contains 

at least vfm elements and 

sup E I(f , wk)l < 2C'(a)K. 
IIfIILqO,)=l kEg  

Thus if {ak}keJ is an arbitrary sequence of real numbers then 

I lY~a ,cwk l lx  = sup ~ .k(f,w,J < 2C'(a)K. T~,ylakt 
kEJ II/llrq(.)=l k e J  

as claimed. 

STEP 3: If the sequence {wk}kej, satisfies (2) and, for a l l j  E J,c~(a) < Ilwjll < 
1 1, then there exists a subset I of J so that III _> c(----~-d~lJI and the sequence 

{Wk}kel is C(a)K-equivalent to the standard basis of e / .  

* W *  Proof'. For i E J let w i E X* be such that ( i ,  wi) = 1. The scalar products 

(w*,wj),  i , j  E J, form the matrix M = (m~j)i,je2 such that mil = 1 and, by 

(2), E ~  lmql < C(:>g 
By [J-S] there exists a subset I of J so that III> C(a)iJ  I and Ejel tmijl < 

for all i E I. Let {ai}ie[ be a sequence of real numbers and laioI = maxiei  ]ail. 

Then 

max lail > a 
i E l  iEI i¢i o 
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We recall the definition of g-ellipsoid. Let E be a Banach space. For a linear 

operator u: g~ ~ E denote by g(u) the following norm: 

g(u)= (El[ ~gkek[12) 1/2, 
k = l  

where gk are independent Gaussian variables and {ek}~=l is the standard basis 

of the space g2. For v: E --* e 2 define the dual norm to g(.): 

g*(v) = sup{tr (v o u)l g(u) < 1}. 

By the theorem of Lewis [P], for every invertible operator u, g(u). g*(u -1) > n 

and there exists an operator uo, such that g(uo) = g*(Uo 1) = v ~ .  The ellipsoid 

uo(B 2) is called the g-ellipsoid of the space E. By a theorem of Pisier [P], for 

every operator v: g2 ._~ E, g(v*) < C l o g n -  g*(v) for some absolute constant C. 

COROLLARY: Let Y be an n-dimensional Banach space and assume that B~ is 

the g-ellipsoid of Y. Then for every K at least one of the following is satisfied: 

(i) there exists a subspace Yo of R n of dimension ~ so that 

IlidlYo: YII < llidlYo: - *  Y*H < 
v ~ l o g n  

- -  ? - -  K 

(ii) there exists a subspace Z of Y of dimension c-~K , CK-isomorphic to pdim Z 

(iii) there exists a subspace 2 of Y* of dimension C-~K, CK-isomorphic to g~m 2. 

Proof'. Let £ be the ellipsoid of maximal volume contained in the unit ball of 

Y. Let e l , . . . , e n  be the axes of £ and A1,. . . ,An, A1 < A2 _< .." _< An, their 

lengths. Let T be the diagonal operator defined by Tei = ~ i e i ,  1 < i < n, and 

thus T(B~) = £. 
If A~- < K let P: R '~ -* R n be the orthogonal projection onto the space 

Y1 = span{e l , . . . ,  e~}. Let g be the standard Gaussian vector in the space R '~ 

and put ~ = Tg the standard Gaussian vector in the space (R '~, H" lIE). We have 

g . god: n Y) = g EHPgHv -< HPTH "E[IgHr -< ~ g2 

and thus the conditions of the lemma are satisfied. Hence by the lemma the case 

(ii) holds. 
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IfA~ > _ ~ t h e n  

Ilidly~: t~ ~ YII < IIT-~IY~II < 
- -  - -  K 

Now let £ be the ellipsoid of maximal volume contained in the unit ball of Y*. 

As before let e l , . . . ,e ,~ be the axes of £ and A1, A2,.. . ,An, A1 __G A2 _< "'" _< A, 

- K (iii) of the their lengths. By the same reasoning if )~n/3 _< v~logn then case 

corollary holds. If also in this inequality the opposite is true then for the space 

]12 = span{~l , . . . ,  ~ } 

x/~log n 

- K 

Thus in this case (i) holds for the space Y0 = Y~ n Y~. | 

Remark: One can prove the corollary in the following slightly stronger form: 

the case (i) should be changed to 

(i)' there exists a subspace Yo of ~ of dimension ~ such that 

Ilidlyo: t~ --* YII <- ~- : ,  [lidlYo: Y --* t~tl -< C, 

IlidlYo: t~ --, y*]] < x/-nl°g n K , }lidlr0: Y* ~ t~ll < C. 

Proof of Theorem 1: Let X and Y be two n-dimensional Banach spaces and 

assume that B~' is the g-ellipsoid of X as well as of Y. Let K be a constant to be 

defined later. We have to estimate the weak factorization norm of the identity 

operator of X through Y. 

We apply the corollary to the space Y. Suppose first that the case (i) of 

the corollary is satisfied. We define next a decomposition of ~ into a sum of 

orothogonal subspaces Xj,  j _< 2 log 2 n, so that  for all j 

(3) Ilidlx~: g~ ~ Xl l .  Ilidlxj: g~ ~ X*ll < 2v% 

Let g be the ellipsoid of maximal volume contained in the unit ball of X, 

el . . . en  it's axes and ;~l , . . . ,~n,  A1 _< "'" _< An, their lengths. We define the 

sequence mj ,  and the subspaces Xj as follows: 

m l = l ,  mj+l=min{s>mj:As>2) tmj}  ifAm~ < 2 " 



Vol. 89, 1995 WEAK DISTANCE BETWEEN BANACH SPACES 199 

1 and mj+l = n + 1 if A,~ >_ ~,kn, Xj = span{e~: mj _< s < mj+l}.  We stop when 

mj+l = n + 1. The ellipsoids Xj N £ are proportional to the unit ball, so the 

inequality (3) holds. It is obvious that there are at most 2 log 2 n spaces Xj. 
Let Y0 be a subspace of Y satisfying (i). Consider the following factorization: 

X Bj A s , Y  , X  

.Jl 1 
X/XJ- a , - Y o  Y/Yo J- a T " X j  

Here Pj, P are the orthogonal projections onto the spaces Xj and ]I0, G = (g~k), 
1 <_ i < 3, 1 _< k < dim Xj a Gaussian matrix with independent normally 

distributed elements g~. One can easily check that 

n/3 
E ( A j o  B j]x,)  = E(ido GTo P o i d o  G o  Pj lx j )  = E ( E g 2 ) . i d [ x ,  = 3id[xj" 

i=1 

Hence, 

idx = 3 Z E ( A j  o Bj). 
3 

Let us estimate the norm corresponding to this representation. 

E I t A j l I  " ItBjl l  ~_ EtIG[I . I[GTII <_ (EI[GH2) 1/2- (~I[GTH2) 1/2 

< c .  EIIall .  EIIGTII. 

mince B~ is the g-ellipsoid of the spaces X and Y, 

g(idlx~: g~ ~ X' )  _< g(id: g~ ---* X')  _< C v ~ l o g n ,  

g(idlyo: g~ ~ Y) _< god: g~ ~ Y) = ~ .  

By the inequality of Chevet IT-J2] 

E[IG[I <[[idlx~: g~ ---* X*[[-g(id[yo: g~ ~ Y) 

+ Hidlyo: t~ ~ Y[[. g(id[x,: g~ ~ X*) 

_<v~-{[id]xj : g~ ~ X*I[ + C v ~ l o g n -  ][idlyo: g~ ~ Yol[ 

+ C nl°gn. 
_<v/-~ • []id[xj: g~ --* X*]] K 
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Similarly, 
EllaTII -<llidlYo : g~ --* Y*II-g(idlx~: g~ ~ X)  

+ ]lidlxj: g~ ----* Xll-g(id]Yo: g~ ~ Y) 
< n l o g n  

+ Cx/~log n-  [lidlx~ : g~ ~ Xli. 
- K 

Finally, by (3) one gets 

EIIGII, Nllar II _< 
Cn 2 log 2 n Cn 3/2 log 2 n 

+ • [lidlx~ : g~ ---* X l l  K s K 
n 3/2 log n n 

+ g Ilid]xj : g2 ~ X* II + Cn3/2 log n. 

Let now e be a unit vector in Xj such that Ile[[× = sup{[[~ll x [~ • Xj ,  [[el[q = 1} 

and Pe is the orthogonal projection onto span{e}. Then 

Hid]xj: g~ --, X H = Ilid o Pc: g~ --, Xll = god o Pc: g~ --. X)  

< g(id: g~ ---* X)  = 

and similarly 

Ilidlxj: g~ --* X*II _< Cx/~logn.  

Thus, if the case (i) of the corollary holds for the space Y then 

EIlGII " tlGTII < Cn21°g ~ n - K + C n  3/2 log n 

and so 
q(X, Y) < Cn log 3 n 

- K + Cnl/Z l°g2 n .  

Suppose next that the case (ii) holds for Y. By [T-J1] there exists a 

decomposition of the identity operator of X idx = ~-~;=1 Uj, so that, for ev- 

ery j, Uj can be factorized through a certain diagonal operator Aj: g~ --, g~: 

X U J , x  

AJ 1 IBJ 

Here ilAjll < 1, IIBjll_ 1, Aj = diag(A~ . . .A~)  and 

N 

Z JlAJll < 
j= l  
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Decompose ~ into a direct sum of the spaces Era, dimEm = c-~, 

m = 1 , . . . ,  ( C K v ~ ) ,  spanned by elements of the standard basis of g~. Let 

Pm be the natural projection of the space ~ onto Era. Suppose that Z is the 

subspace of Y given by the case (ii) of the corollary. Then there exists a projection 

P onto Z such that 

[[ p: Y --~ YI] <- C K .  

Define a decomposition of the operator Uj as follows: 

c g v'-¢ 

uj = E o 
m=l 

where the operators R j and S j are defined by the diagram 

X Aj id Aj 

Em , E m  , Z  . Z  

s~  , y R~ 

B i ,  X 

( ~.~mc.~K (AS,12, ~ 1/2 
Then one ge t s  [[Aj[Em[[ = \ A.~s=(rn_l)c__~g.~+l I, j] ) , SO 

c K ~  

E 
m=l  

c g v ~  

IIRJmll " IIsJll <- E d ( E m ,  Z ) .  117)11 • IIAjlE.~II 
m=l 

m=l s= (m_l )  C_~K + 1 

< C K 2 ( C K v / _ ~ ) l / 2 ( k  )1 /2  ( A ; )  2 = dKS/2nl/4jjAjl I. 

This means that weak factorization norm corresponding to the decomposition 

N CK~j'K 
idx : F_, 

j = l  m = l  

is at most CK5/2n3/4. 
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If the case (iii) of the corollary holds then by duality one has the same estimate 

of the weak factorization norm. To end the proof choose the constant K in the 

optimal way, i.e. K = Cn 1/14 log 6/7 n. This gives 

q(X, Y) <_ Cn 13/14 log 15/7 n. | 

Remark: I f d i m X  = n, d imY = m then the same calculations give the following 

estimate for the weak distance: 

n log 15/7 n / 
w d ( X , Y ) < C m a x /  ml/14 ; m l°g 15/7m 

- n l / 1 4  / " 

Proof of Theorem 2: Let B~ be the ellipsoid of maximal volume contained in 

the unit ball of X and Ad be the g-ellipsoid of the space X*. Let e l , . .  •, en be the 

axes of AJ and p l , . . . ,  Pn, Pl ~ " '"  ~ Pn, their lengths. We shall prove first that 

-< 5 "  Assume that #~,~ > ~-~. Let Z be the subspace of X spanned by # ~4n 
a 2 

the vectors ek, 1 < k < y n ,  and P be the orthogonal projection onto the space 

Z. Denote by XM the n-dimensional Banach space with the unit ball .M. Then 

we have 

(5) ltidlz_L: g~ ~ X~]I < ax/~ 
- 3 

By the lemma of Urysohn [P] one gets 

(vo l (Bx)  1/n 
E [Igllx* -> v ~ -  ~, vol(B~) ) _> an. 

Prom the other side, 

ElIgllx* < EIIPgI[x* + EIl(id - P)gllx*. 

By (5), 

a o  
Ell(id - P)glrx. <- a e(idlz-: X ~  - ,  X*) <__ god: XM ~ X*) <_ --~-, 

~llPgtlx* = ~ f Ilzllx.dm(z). 
X,~-lf'.IZ 

Here re(z) is the I-Iaar measure on the sphere Z n S  n-1. Since B~ is the ellipsoid of 

minimal volume which contains Bx*, then, by the theorem of F. John, Irzllx- _< 

x/~llzll~. 
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So~ 

EllPgllx* <_ ~ "  v~ = 3 n 

and we get the contradiction E I[g[[x* -< ~an. Thus we have proved that  for the 

polar body 34 ° of the ellipsoid J~4 

3 
]lidlz: g~ --* XMo [[ = #°2. < - -  

9 - -  a ~v/n" 

Since A4 is the g- ellipsoid of X*, we have 

g(idlz: XMo -~ x )  _< god: X~4o ~ x )  < Cv~logn  

and so 

[[Pgl[x <_ [[idIz: g~ --* XMo[[. g(idlz: X ~ o  --* X)  _< 3c logn. 
a 

Thus all the conditions of the lemma are satisfied. | 
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